

Wind energy infrastructures and bats: is coexistence possible? Regional scale modelling as a promising solution

ROSCIONI F., DI FEBBRARO M., RUSSO D.

IMPACTS OF WIND FARMS ON BAT POPULATIONS

•COLLISIONS

•INTERFERENCES WITH COMMUTING AND MIGRATION ROUTES

•FORAGING HABITAT LOSS OR ALTERATION

INTERFERENCE WITH ROOSTS

Rodrigues et al. 2008

CUMULATIVE IMPACT

LARGE SCALE IMPACTS THAT ARE NOT DETECTABLE ON A LOCAL SCALE (foraging habitat loss, cumulative collision risk, connectivity alteration, barrier effect etc.)

AIM

propose a landscape approach to evaluate the cumulative impact of wind farms on bat communities on a regional scale

OBJECTIVES

a) to produce risk maps by overlaying foraging habitat maps with existing and planned wind farms locations

b) to assess changes in the spatial pattern of foraging habitat determined by existing and planned wind turbines

c) to identify the most impacting wind turbines that interfere with the most valuable connectivity routes

d) to provide mitigation measures for habitat alteration and connectivity disruption

Based on research priorities evidenced by Rodrigues et al. 2008; Jones et al. 2009

PROJECT FRAMEWORK

STUDY AREA

Ν 4.437,58 km² existing wind turbines \odot \boxtimes planned wind turbines ☆ sampling locations Elevation High <u>6)</u> 0 \mathbf{O} 10 . • $\overrightarrow{\mathbf{x}}$ 39 wind farms (28 operating and 11 planned), for a total of 543 শ্ব wind turbines Kilometers 16 24

MAXIMUM ENTROPY (MAXENT 3.3.3k, Phillips et al. 2004, 2006)

- Maximum Entropy is a machine-learning non-parametric method which allows complex models to be developed even from small datasets
- Requires presence data only
- great performance when compared with other SDMs

2010-2011 Presence data

P. pipistrellus	121	Autocorrelation analysis	29
N. leisleri	47	Autocorrelation analysis	19

MAXIMUM ENTROPY (MAXENT 3.3.3k) ENVIRONMENTAL VARIABLES

Туре	Variables	Code	Source of data	Source of maps and scale
	Elevation (m)	DTM		
Topographical	Exposure north-south Distance in m to the maximum slope (40 degrees)	Aspectns Euslope40	Calculated from DTM	cell size 40 m year 2005 MATTM Geoportale Nazionale
	Distance in m to water courses	Euidro	Euclidean distance calculated from water courses	scale: 1:50.000 year 2008 MATTM- Geoportale Nazionale
	Reclassified Corine Land Cover	RecICLC		1:100.000 year 2006 EEA CLC expanded to a IV level of detail developed for Italy (MATTM- Geoportale Nazionale)
Cover types	Distance to natural agriculture (2.4.3)	Euculna		
	Distance to forests (3.1.1)	Euforest	Euclidean distance calculated from CLC categories	
	Distance to riparian forests (3.1.1.6)	Eurip	, , , , , , , , , , , , , , , , , , ,	
	Distance to complex cultivation patterns (2.4.2)	Eucomplex		
	Distance to olive groves (2.2.3)	Euolive		

Landscape Pattern analysis

FRAGSTAT 3.3 Version (McGarigal&Marks, 1995) ran considering and omitting wind farms on binary SDMs:

- suitable for P. pipistrellus
- suitable for N. leisleri

Landscape metrics

• suitable for both species.

Class area (CA)	Number of Patches (NP)	Mean Patch Size (MPS)
the extension of each class in hectares	the number of patches present in the class of interest	the mean size of patches in the class of interest
Largest Patch Index (LPI)	Area Weighted Mean Shape Index (AWMSI)	Aggregation Index(AI)
landscape percentage occupied by the greatest patch of the interest class	quantifying the landscape configuration in terms of complexity of the patches that constitute it	describes the adjacencies of habitat "cells"

UNICOR which integrates least cost path and kernel predictions (Landguth et al. 2012) requires two input files as the first step: 1) a landscape resistance grid

suitable areas: low resistance

not suitable : high resistance value

slope, forest edges, hydrography: medium resistance

UNICOR which integrates least cost path and kernel predictions (Landguth et al. 2012) requires two input files as the first step: 2) point locations for each population or individual's location.

50 points, extracted by the predicted suitable areas for the species.

We repeated the extraction for 10 times to obtain 10 random dataset of point locations

UNICOR which integrates least cost path and kernel predictions (Landguth et al. 2012) requires two input files as the first step: 1) a landscape resistance grid; 2) point locations for each population or individual's location.

10 UNICOR run.

UNICOR output: reclassification considering as threshold the median (Cianfrani et al. 2013)

Overlap procedure: connectivity map overlaid with that containing the location of existing and planned turbines, each buffered 150 m, applying the zonal statistic function of ArcGis10

Suitability

Landscape Pattern analysis

FRAGSTAT 3.3 Version (McGarigal & Marks, 1995)

Indices	Species	no wind farms	% variation existing wind farms	% variation existing + planned wind farms
CA (ha)	P. pipistrellus	22,8007.04	-0.70	-1.00
CA (ha)	N. leisleri	18,8803.84	-0.65	-1.00
CA (ha)	Both species	17,6754.40	-0.69	-1.06
NP	P. pipistrellus	103	+7.76	+12.62
NP	N. leisleri	174	+4.02	+7.47
NP	Both	169	+4.14	+7.69
LPI (%)	P. pipistrellus	44.85	-0.67	-1.00
LPI (%)	N. leisleri	34.69	-0.55	-0.94
LPI (%)	Both species	32.17	-0.59	-1.02
MPS (ha)	P. pipistrellus	2,213.6	-7.86	-12.09
MPS (ha)	N. leisleri	1,085.0	-4.49	-7.88
MPS (ha)	Both species	1,045.88	-4.49	-8.12
AWMSI	P. pipistrellus	8.75	+8.50	+12.11
AWMSI	N. leisleri	6.41	+7.29	+11.89
AWMSI	Both species	7.30	+6.59	+10.73
AI (%)	P. pipistrellus	99.11	-0.08	-0.12
AI (%)	N. leisleri	99.11	-0.07	-0.11
AI (%)	Both species	98.91	-0.08	-0.12

OVERLAP WITH FOREST EDGES

13% of existing turbines fell within 2660.67 ha of forest edges

21% of the total (planned + existing) turbines fell within 3141.68ha

> **ECOLOGICAL TRAP!** (Ahlén et al. 2007, 2009; Horn et al. 2008; Rydell et al. 2010)

CONNECTIVITY MAP for N. leisleri

BARRIER IMPACT ASSESSMENT

WIND FARMS IMPACT ASSESSMENT

Wind Farm	Sector location in Molise	Existing	Planned	Habitat Alteration	N wind turbines	N wind turbines intersecting PCCs	Meters impacted (150 buffer around each turbine)
Capracotta	NW	х		x	16	7	1361.59
Vastogirardi	Ν	х		x	18	11	1734.47
San Pietro Avellana	NW	х		x	12	12	1806.37
Pietrabbondante	E	х		x	13	9	1424.94
Carpinone	W	х		x	11	2	469.12
Frosolone	W	х		х	19	8	1120.46
Frosolone	W	х		х	8	8	932.22
Macchiagodena	W	х		х	19	7	1774.12
Montaquila	NW		х	х	16	6	808.65
Monteroduni	W		х	х	20	5	1653.54
Monteroduni-S. Agapito	W		х	х	22	-	-
Castelpizzuto	SW		х	x	21	12	1914.76
Roccamandolfi	SW	10		hăn	29	d farmha imu	339.87
Longano IJ EXISL	Swa	uo	piai	meu		u ianii5 iin	679.43
Roccamandolfi	SW	• •		х	12	6	1331.15
Cantalupo del Sanni	term c	ot la	nøs	cabe	e bat	tern alterat	lon -
Cerce picolla-S.Giuliano-Vinchiaturo	E	х		x	16	1	310.20
San Giovanni in Galdo	E	anvol	har	rier (offer	-	-
Campolieto	E	X	Nai	, Y			-
Lucito	E	х		х	17	1	361.79
Monterosso	NE	х		х	5	5	1300.33
Acquaviva-Collecroce	NE	х			11	-	-
Morrone del Sannio	SE		х	x	7	5	1032.20
Ripabottoni	SE	х		х	30	8	1018.10
Castellino	E	х			1	-	-
Monacilioni	SE	х		x	16	3	764.26
Monacilioni	SE	х		х	4	-	-
Pietracatella	SE	х		x	18	-	-
Macchia Val Fortore	SE	х		x	12	-	-
S. Elia a Pianisi "Colle delle Brecce"	SE		х	x	7	2	708.32
Bonefro	SE	х		х	4	-	-
S. giuliano di Puglia	SE		х	x	16	2	652.92
S. Croce di Magliano	SE		х		11	2	686.12
Montelongo-Montorio dei Frentani Rotello	E	х		x	21	-	-
Rotello	E	х			15	-	-
Ururi	E		х		13	-	-
San Benedetto	E	х			6	-	-
San Martino in Pensilis	E	х			29	-	-

IMPLICATION FOR CONSERVATION

IMPLICATION FOR CONSERVATION

AVOID CONSTUCTION

• Planned turbines falling within forest edges (Rodrigues et al.2008)

 8 planned wind farms that fall in suitable areas and encounters high connectivity routes

MITIGATION MEASURES

 The 15 existing wind farms falling in high connectivity migratory routes and in suitable habitats at wind speed lower than 7 m/s turbines have to be shut down (Johnson et al 2003; Arnett et al. 2005; Horn and Arnett 2005; Brinkmann et al. 2006)

SURVEYS FOR MONITORING BAT FATALITIES

 Concentration of field effort on wind farms that affect bat assemblages both in terms of habitat alteration and barrier effect.

PUBLICATIONS

Biodivers Conserv DOI 10.1007/s10531-013-0515-3

ORIGINAL PAPER

Regional-scale modelling of the cumulative impact of wind farms on bats

F. Roscioni · D. Russo · M. Di Febbraro · L. Frate · M. L. Carranza · A. Loy

Landscape Ecol DOI 10.1007/s10980-014-0030-2

RESEARCH ARTICLE

A modelling approach to infer the effects of wind farms on landscape connectivity for bats

Federica Roscioni · Hugo Rebelo · Danilo Russo · Maria Laura Carranza · Mirko Di Febbraro · Anna Loy

Received: 9 December 2013 / Accepted: 2 April 2014 © Springer Science+Business Media Dordrecht 2014

ACKNOWLEDGEMENTS

... APPLICATIONS

Flexible and transferable to other conservation issues and infrastructure implementations...

...APPLICATIONS

THANK YOU!

www.ecomodel.eu